NOTE ON MATH 2060: MATHEMATICAL ANALYSIS II: 2016-17

CHI-WAI LEUNG

1. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

- (i): All functions f, g, h... are bounded real valued functions defined on [a, b] and $m \le f \le M$ on [a, b].
- (ii): Let $P: a = x_0 < x_1 < \dots < x_n = b$ denote a partition on [a, b]; Put $\Delta x_i = x_i x_{i-1}$ and $||P|| = \max \Delta x_i$.
- (iii): $M_i(f, P) := \sup\{f(x) : x \in [x_{i-1}, x_i\}; m_i(f, P) := \inf\{f(x) : x \in [x_{i-1}, x_i\}.$ Set $\omega_i(f, P) = M_i(f, P) - m_i(f, P).$
- Set $\omega_i(f, P) = M_i(f, P) m_i(f, P)$. (iv): (the upper sum of f): $U(f, P) := \sum M_i(f, P)\Delta x_i$. (the lower sum of f). $L(f, P) := \sum m_i(f, P)\Delta x_i$.

Remark 1.1. It is clear that for any partition on [a, b], we always have

- (i) $m(b-a) \leq L(f,P) \leq U(f,P) \leq M(b-a).$
- (*ii*) L(-f, P) = -U(f, P) and U(-f, P) = -L(f, P).

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a, b]. We have the following assertions.

- (i) If $P \subseteq Q$, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.
- (ii) We always have $L(f, P) \leq U(f, Q)$.

Proof. For Part (i), we first claim that $L(f, P) \leq L(f, Q)$ if $P \subseteq Q$. By using the induction on l := #Q - #P, it suffices to show that $L(f, P) \leq L(f, Q)$ as l = 1. Let $P : a = x_0 < x_1 < \cdots < x_n = b$ and $Q = P \cup \{c\}$. Then $c \in (x_{s-1}, x_s)$ for some s. Notice that we have

$$m_s(f, P) \le \min\{m_s(f, Q), m_{s+1}(f, Q)\}$$

So, we have

$$m_s(f, P)(x_s - x_{s-1}) \le m_s(f, Q)(c - x_{s-1}) + m_{s+1}(f, Q)(x_s - c)$$

This gives the following inequality as desired.

(1.1)
$$L(f,Q) - L(f,P) = m_s(f,Q)(c-x_{s-1}) + m_{s+1}(f,Q)(x_s-c) - m_s(f,P)(x_s-x_{s-1}) \ge 0.$$

Now by considering -f in the Inequality 1.1 above, we see that $U(f, Q) \leq U(f, P)$. For Part (ii), let P and Q be any pair of partitions on [a, b]. Notice that $P \cup Q$ is also a partition on [a, b] with $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. So, Part (i) implies that

$$L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q).$$

The proof is complete.

Date: April 9, 2018.

The following plays an important role in this chapter.

Definition 1.3. Let f be a bounded function on [a, b]. The upper integral (resp. lower integral) of fover [a, b], write $\overline{\int_a^b} f$ (resp. $\underline{\int_a^b} f$), is defined by

$$\overline{\int_{a}^{b}} f = \inf\{U(f, P) : P \text{ is a partition on } [a, b]\}.$$

(resp.

$$\int_{\underline{a}}^{b} f = \sup\{L(f, P) : P \text{ is a partation on } [a, b]\}.)$$

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a, b]. With the notation as above, we always have

$$(i) \qquad \qquad \underbrace{\int_{a}^{b} f \leq \overline{\int_{a}^{b}} f.}_{(iii)}$$

$$(ii) \quad \underbrace{\int_{a}^{b} (-f) = -\overline{\int_{a}^{b}} f.}_{\underline{\int_{a}^{b}} f + \underline{\int_{a}^{b}} g \leq \underline{\int_{a}^{b}} (f+g) \leq \overline{\int_{a}^{b}} (f+g) \leq \overline{\int_{a}^{b}} f + \overline{\int_{a}^{b}} g.$$

Proof. Part (i) follows from Lemma 1.2 at once.

Part (*ii*) is clearly obtained by L(-f, P) = -U(f, P). For proving the inequality $\underline{\int_a^b} f + \underline{\int_a^b} g \leq \underline{\int_a^b} (f+g) \leq \text{first.}$ It is clear that we have $L(f, P) + L(g, P) \leq L(f+g, P)$ for all partitions P on [a, b]. Now let P_1 and P_2 be any partition on [a, b]. Then by Lemma 1.2, we have

$$L(f, P_1) + L(g, P_2) \le L(f, P_1 \cup P_2) + L(g, P_1 \cup P_2) \le L(f + g, P_1 \cup P_2) \le \underline{\int_a^b} (f + g).$$

So, we have

(1.2)
$$\underline{\int_{a}^{b}}f + \underline{\int_{a}^{b}}g \le \underline{\int_{a}^{b}}(f+g)$$

As before, we consider -f and -g in the Inequality 1.2, we get $\overline{\int_a^b}(f+g) \leq \overline{\int_a^b}f + \overline{\int_a^b}g$ as desired. \Box

The following example shows the strict inequality in Proposition 1.4 (*iii*) may hold in general.

Example 1.5. Define a function $f, g: [0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ -1 & \text{otherwise.} \end{cases}$$

and

$$g(x) = \begin{cases} -1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ 1 & \text{otherwise.} \end{cases}$$

Then it is easy to see that $f + g \equiv 0$ and

$$\overline{\int_0^1} f = \overline{\int_0^1} g = 1 \quad and \quad \underline{\int_0^1} f = \underline{\int_0^1} g = -1.$$

So, we have

$$-2 = \underline{\int_a^b} f + \underline{\int_a^b} g < \underline{\int_a^b} (f+g) = 0 = \overline{\int_a^b} (f+g) < \overline{\int_a^b} f + \overline{\int_a^b} g = 2.$$

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on [a, b]. We say that f is Riemann integrable over [a, b] if $\overline{\int_{b}^{a}} f = \frac{\int_{a}^{b}}{f} f$. In this case, we write $\int_{a}^{b} f$ for this common value and it is called the Riemann integral of f over [a, b].

Also, write R[a, b] for the class of Riemann integrable functions on [a, b].

Proposition 1.7. With the notation as above, R[a,b] is a vector space over \mathbb{R} and the integral

$$\int_{a}^{b} : f \in R[a, b] \mapsto \int_{a}^{b} f \in \mathbb{R}$$

defines a linear functional, that is, $\alpha f + \beta g \in R[a,b]$ and $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$ for all $f, g \in R[a,b]$ and $\alpha, \beta \in \mathbb{R}$.

Proof. Let $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$. Notice that if $\alpha \ge 0$, it is clear that $\overline{\int_a^b} \alpha f = \alpha \overline{\int_a^b} f = \alpha \int_a^b f$. Therefore, we have $\int_a^b \alpha f = \alpha \int_a^b f$ for all $\alpha \in \mathbb{R}$. For showing $f + g \in R[a, b]$ and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$, these will follows from Proposition 1.4 (*iii*) at once. The proof is finished.

The following result is the important characterization of a Riemann integrable function. Before showing this, we will use the following notation in the rest of this chapter. For a partition $P: a = x_0 < x_1 < \cdots < x_n = b$ and $1 \le i \le n$, put

$$\omega_i(f, P) := \sup\{|f(x) - f(x')| : x, x' \in [x_{i-1}, x_i]\}.$$

It is easy to see that $U(f, P) - L(f, P) = \sum_{i=1}^{n} \omega_i(f, P) \Delta x_i$.

Theorem 1.8. Let f be a bounded function on [a,b]. Then $f \in R[a,b]$ if and only if for all $\varepsilon > 0$, there is a partition $P : a = x_0 < \cdots < x_n = b$ on [a,b] such that

(1.3)
$$0 \le U(f,P) - L(f,P) = \sum_{i=1}^{n} \omega_i(f,P) \Delta x_i < \varepsilon.$$

Proof. Suppose that $f \in R[a, b]$. Let $\varepsilon > 0$. Then by the definition of the upper integral and lower integral of f, we can find the partitions P and Q such that $U(f, P) < \overline{\int_a^b} f + \varepsilon$ and $\underline{\int_a^b} f - \varepsilon < L(f, Q)$. By considering the partition $P \cup Q$, we see that

$$\frac{\int_{a}^{b} f - \varepsilon < L(f, Q) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, P) < \int_{a}^{b} f + \varepsilon.$$

Since $\int_a^b f = \overline{\int_a^b} f = \int_a^b f$, we have $0 \le U(f, P \cup Q) - L(f, P \cup Q) < 2\varepsilon$. So, the partition $P \cup Q$ is as desired.

Conversely, let $\varepsilon > 0$, assume that the Inequality 1.3 above holds for some partition P. Notice that we have

$$L(f, P) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq U(f, P).$$

So, we have $0 \leq \overline{\int_a^b} f - \underline{\int_a^b} f < \varepsilon$ for all $\varepsilon > 0$. The proof is finished.

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over [a, b] if and only if the "size" of the discontinuous set of f is arbitrary small.

Example 1.10. Let $f : [0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p}, \text{ where } p, q \text{ are relatively prime positive integers}; \\ 0 & \text{otherwise.} \end{cases}$$

Then $f \in R[0, 1]$ *.*

(Notice that the set of all discontinuous points of f, say D, is just the set of all $(0,1] \cap \mathbb{Q}$. Since the set $(0,1] \cap \mathbb{Q}$ is countable, we can write $(0,1] \cap \mathbb{Q} = \{z_1, z_2, ...\}$. So, if we let m(D) be the "size" of the set D, then $m(D) = m(\bigcup_{i=1}^{\infty} \{z_i\}) = \sum_{i=1}^{\infty} m(\{z_i\}) = 0$, in here, you may think that the size of each set $\{z_i\}$ is 0.

Proof. Let $\varepsilon > 0$. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

$$U(f,P) - L(f,P) < \varepsilon.$$

Notice that for $x \in [0, 1]$ such that $f(x) \ge \varepsilon$ if and only if x = q/p for a pair of relatively prime positive integers p, q with $\frac{1}{p} \ge \varepsilon$. Since $1 \le q \le p$, there are only finitely many pairs of relatively prime positive integers p and q such that $f(\frac{q}{p}) \ge \varepsilon$. So, if we let $S := \{x \in [0, 1] : f(x) \ge \varepsilon\}$, then S is a finite subset of [0, 1]. Let L be the number of the elements in S. Then, for any partition $P : a = x_0 < \cdots < x_n = 1$, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \left(\sum_{i: [x_{i-1}, x_i] \cap S = \emptyset} + \sum_{i: [x_{i-1}, x_i] \cap S \neq \emptyset}\right) \omega_i(f, P) \Delta x_i.$$

Notice that if $[x_{i-1}, x_i] \cap S = \emptyset$, then we have $\omega_i(f, P) \leq \varepsilon$ and thus,

$$\sum_{:[x_{i-1},x_i]\cap S=\emptyset} \omega_i(f,P)\Delta x_i \le \varepsilon \sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \Delta x_i \le \varepsilon(1-0).$$

On the other hand, since there are at most 2L sub-intervals $[x_{i-1}, x_i]$ such that $[x_{i-1}, x_i] \cap S \neq \emptyset$ and $\omega_i(f, P) \leq 1$ for all i = 1, ..., n, so, we have

$$\sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \omega_i(f,P)\Delta x_i \le 1 \cdot \sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \Delta x_i \le 2L \|P\|.$$

We can now conclude that for any partition P, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon + 2L \|P\|.$$

So, if we take a partition P with $||P|| < \varepsilon/(2L)$, then we have $\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \leq 2\varepsilon$. The proof is finished.

Proposition 1.11. Let f be a function defined on [a, b]. If f is either monotone or continuous on [a, b], then $f \in R[a, b]$.

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing. Notice that for any partition $P : a = x_0 < \cdots < x_n = b$, we have $\omega_i(f, P) = f(x_i) - f(x_{i-1})$. So, if $||P|| < \varepsilon$, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i < \|P\| \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \|P\| (f(b) - f(a)) < \varepsilon(f(b) - f(a))$$

Therefore, $f \in R[a, b]$ if f is monotone.

Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) - f(x')| < \varepsilon$ as $x, x' \in [a, b]$ with $|x - x'| < \delta$. So, if we choose a partition P with $||P|| < \delta$, then $\omega_i(f, P) < \varepsilon$ for all i. This implies that

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon \sum_{i=1}^{n} \Delta x_i = \varepsilon(b-a).$$

The proof is complete.

Proposition 1.12. We have the following assertions.

- (i) If $f, g \in R[a, b]$ with $f \leq g$, then $\int_a^b f \leq \int_a^b g$. (ii) If $f \in R[a, b]$, then the absolute valued function $|f| \in R[a, b]$. In this case, we have $|\int_a^b f| \leq 1$ $\int_{a}^{b} |f|$

Proof. For Part (i), it is clear that we have the inequality $U(f, P) \leq U(g, P)$ for any partition P. So, we have $\int_a^b f = \overline{\int_a^b} f \le \overline{\int_a^b} g = \int_a^b g$. For Part (*ii*), the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality

 $||f|(x') - |f|(x'')| \le |f(x') - f(x'')|$ for all $x', x'' \in [a, b]$. Thus, we have $U(|f|, P) - L(|f|, P) \le C$ U(f, P) - L(f, P) for any partition P on [a, b].

Finally, since we have $-f \le |f| \le f$, by Part (i), we have $|\int_a^b f| \le \int_a^b |f|$ at once.

Proposition 1.13. Let a < c < b. We have $f \in R[a, b]$ if and only if the restrictions $f|_{[a,c]} \in R[a, c]$ and $f|_{[c,b]} \in R[c,b]$. In this case we have

(1.4)
$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Proof. Let $f_1 := f|_{[a,c]}$ and $f_2 := f|_{[c,b]}$. It is clear that we always have

$$U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(P, f) - L(f, P)$$

for any partition P_1 on [a, c] and P_2 on [c, b] with $P = P_1 \cup P_2$.

From this, we can show the sufficient condition at once.

For showing the necessary condition, since $f \in R[a, b]$, for any $\varepsilon > 0$, there is a partition Q on [a, b]

such that $U(f,Q) - L(f,Q) < \varepsilon$ by Theorem 1.8. Notice that there are partitions P_1 and P_2 on [a,c] and [c,b] respectively such that $P := Q \cup \{c\} = P_1 \cup P_2$. Thus, we have

$$U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(f, P) - L(f, P) \le U(f, Q) - L(f, Q) < \varepsilon.$$

So, we have $f_1 \in R[a, c]$ and $f_2 \in R[c, b]$.

It remains to show the Equation 1.4 above. Notice that for any partition P_1 on [a, c] and P_2 on [c, b], we have

$$L(f_1, P_1) + L(f_2, P_2) = L(f, P_1 \cup P_2) \le \underline{\int_a^b} f = \int_a^b f$$

So, we have $\int_a^c f + \int_c^b f \leq \int_a^b f$. Then the inverse inequality can be obtained at once by considering the function -f. Then the resulted is obtained by using Theorem 1.8.

2. Fundamental Theorem of Calculus

Now if $f \in R[a, b]$, then by Proposition 1.13, we can define a function $F : [a, b] \to \mathbb{R}$ by

(2.1)
$$F(c) = \begin{cases} 0 & \text{if } c = a \\ \int_a^c f & \text{if } a < c \le b. \end{cases}$$

Theorem 2.1. Fundamental Theorem of Calculus: With the notation as above, assume that $f \in R[a, b]$, we have the following assertion.

- (i) If there is a continuous function H on [a, b] which is differentiable on (a, b) with H' = f, then $\int_a^b f = H(b) - H(a)$. In this case, H is called an indefinite integral of f. (note: if H_1 and H_2 both are the indefinite integrals of f, then by the Mean Value Theorem, we have $H_2 = H_1 + \text{ constant}$).
- (ii) The function F defined as in Eq. 2.1 above is continuous on [a,b]. Furthermore, if f is continuous on [a,b], then F' exists on (a,b) and F' = f on (a,b).

Proof. For Part (i), notice that for any partition $P: a = x_0 < \cdots < x_n = b$, then by the Mean Value Theorem, for each $[x_{i-1}, x_i]$, there is $\xi \in (x_{i-1}, x_i)$ such that $F(x_i) - F(x_{i-1}) = F'(\xi)\Delta x_i = f(\xi)\Delta x_i$. So, we have

$$L(f, P) \le \sum f(\xi) \Delta x_i = \sum F(x_i) - F(x_{i-1}) = F(b) - F(a) \le U(f, P)$$

for all partitions P on [a, b]. This gives

$$\int_{a}^{b} f = \underline{\int_{a}^{b}} f \le F(b) - F(a) \le \overline{\int_{a}^{b}} f = \int_{a}^{b} f$$

as desired.

For showing the continuity of F in Part (*ii*), let a < c < x < b. If $|f| \le M$ on [a, b], then we have $|F(x) - F(c)| = |\int_c^x f| \le M(x-c)$. So, $\lim_{x\to c^+} F(x) = F(c)$. Similarly, we also have $\lim_{x\to c^-} F(x) = F(c)$. Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any t > 0 with a < c < c + t < b, we have

$$\inf_{x \in [c,c+t]} f(x) \le \frac{1}{t} (F(c+t) - F(c)) = \frac{1}{t} \int_{c}^{c+t} f \le \sup_{x \in [c,c+t]} f(x).$$

Since f is continuous at c, we see that $\lim_{t\to 0+} \frac{1}{t}(F(c+t)-F(c)) = f(c)$. Similarly, we have $\lim_{t\to 0-} \frac{1}{t}(F(c+t)-F(c)) = f(c)$. So, we have F'(c) = f(c) as desired. The proof is finished.

Definition 3.1. For each bounded function f on [a,b]. Call $R(f, P, \{\xi_i\}) := \sum f(\xi_i)\Delta x_i$, where $\xi_i \in [x_{i-1}, x_i]$, the Riemann sum of f over [a,b].

We say that the Riemann sum $R(f, P, \{\xi_i\})$ converges to a number A as $||P|| \to 0$, write $A = \lim_{\|P\|\to 0} R(f, P, \{\xi_i\})$, if for any $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - R(f, P, \{\xi_i\})| < \varepsilon$$

whenever $||P|| < \delta$ and for any $\xi_i \in [x_{i-1}, x_i]$.

Proposition 3.2. Let f be a function defined on [a,b]. If the limit $\lim_{\|P\|\to 0} R(f,P,\{\xi_i\}) = A$ exists,

then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition $P: a = x_0 < \cdots < x_n = b$ such that $|\sum_{k=1}^n f(\xi_k) \Delta x_k| < 1 + |A|$ for any $\xi_k \in [x_{k-1}, x_k]$. Since f is unbounded, we may assume that f is unbounded on $[a, x_1]$. In particular, we choose $\xi_k = x_k$ for k = 2, ..., n. Also, we can choose $\xi_1 \in [a, x_1]$ such that

$$|f(\xi_1)|\Delta x_1 > 1 + |A| + |\sum_{k=2}^n f(x_k)\Delta x_k|.$$

It leads to a contradiction because we have $1 + |A| > |f(\xi_1)|\Delta x_1 - |\sum_{k=2}^n f(x_k)\Delta x_k|$. The proof is finished.

Lemma 3.3. $f \in R[a,b]$ if and only if for any $\varepsilon > 0$, there is $\delta > 0$ such that $U(f,P) - L(f,P) < \varepsilon$ whenever $||P|| < \delta$.

Proof. The converse follows from Theorem 1.8.

Assume that f is integrable over [a, b]. Let $\varepsilon > 0$. Then there is a partition $Q : a = y_0 < ... < y_l = b$ on [a, b] such that $U(f, Q) - L(f, Q) < \varepsilon$. Now take $0 < \delta < \varepsilon/l$. Suppose that $P : a = x_0 < ... < x_n = b$ with $||P|| < \delta$. Then we have

$$U(f,P) - L(f,P) = I + II$$

where

$$I = \sum_{i:Q \cap [x_{i-1}, x_i] = \emptyset} \omega_i(f, P) \Delta x_i;$$

and

$$II = \sum_{i:Q \cap [x_{i-1}, x_i] \neq \emptyset} \omega_i(f, P) \Delta x_i$$

Notice that we have

$$I \le U(f,Q) - L(f,Q) < \varepsilon$$

and

$$II \le (M-m) \sum_{i:Q \cap [x_{i-1},x_i] \neq \emptyset} \Delta x_i \le (M-m) \cdot 2l \cdot \frac{\varepsilon}{l} = 2(M-m)\varepsilon.$$

The proof is finished.

Theorem 3.4. $f \in R[a,b]$ if and only if the Riemann sum $R(f, P, \{\xi_i\})$ is convergent. In this case, $R(f, P, \{\xi_i\})$ converges to $\int_a^b f(x)dx$ as $||P|| \to 0$.

Proof. For the proof (\Rightarrow) : we first note that we always have

$$L(f, P) \le R(f, P, \{\xi_i\}) \le U(f, P)$$

and

$$L(f,P) \le \int_{a}^{b} f(x)dx \le U(f,P)$$

for any partition P and $\xi_i \in [x_{i-1}, x_i]$.

Now let $\varepsilon > 0$. Lemma 3.3 gives $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ as $||P|| < \delta$. Then we have

$$\left|\int_{a}^{b} f(x)dx - R(f, P, \{\xi_i\})\right| < \varepsilon$$

as $||P|| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$. The necessary part is proved and $R(f, P, \{\xi_i\})$ converges to $\int_a^b f(x) dx$. For (\Leftarrow) : assume that there is a number A such that for any $\varepsilon > 0$, there is $\delta > 0$, we have

$$A - \varepsilon < R(f, P, \{\xi_i\}) < A + \varepsilon$$

for any partition P with $||P|| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$.

Notice that f is automatically bounded in this case by Proposition 3.2.

Now fix a partition P with $||P|| < \delta$. Then for each $[x_{i-1}, x_i]$, choose $\xi_i \in [x_{i-1}, x_i]$ such that $M_i(f, P) - \varepsilon \leq f(\xi_i)$. This implies that we have

$$U(f, P) - \varepsilon(b - a) \le R(f, P, \{\xi_i\}) < A + \varepsilon.$$

So we have shown that for any $\varepsilon > 0$, there is a partition \mathcal{P} such that

(3.1)
$$\overline{\int_{a}^{b}}f(x)dx \le U(f,P) \le A + \varepsilon(1+b-a)$$

By considering -f, note that the Riemann sum of -f will converge to -A. The inequality 3.1 will imply that for any $\varepsilon > 0$, there is a partition P such that

$$A - \varepsilon(1 + b - a) \le \underline{\int_{a}^{b}} f(x) dx \le \overline{\int_{a}^{b}} f(x) dx \le A + \varepsilon(1 + b - a).$$

ed. \Box

The proof is finished.

Theorem 3.5. Let $f \in R[c,d]$ and let $\phi : [a,b] \longrightarrow [c,d]$ be a strictly increasing C^1 function with f(a) = c and f(b) = d. Then $f \circ \phi \in R[a,b]$, moreover, we have

$$\int_{c}^{d} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt.$$

Proof. Let $A = \int_c^d f(x) dx$. By Theorem 3.4, we need to show that for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k| < \varepsilon$$

for all $\xi_k \in [t_{k-1}, t_k]$ whenever $Q : a = t_0 < ... < t_m = b$ with $||Q|| < \delta$. Now let $\varepsilon > 0$. Then by Lemma 3.3 and Theorem 3.4, there is $\delta_1 > 0$ such that

$$(3.2) |A - \sum f(\eta_k) \triangle x_k| < \varepsilon$$

and

(3.3)
$$\sum \omega_k(f, P) \triangle x_k < \varepsilon$$

for all $\eta_k \in [x_{k-1}, x_k]$ whenever $P : c = x_0 < ... < x_m = d$ with $||P|| < \delta_1$. Now put $x = \phi(t)$ for $t \in [a, b]$.

Now since ϕ and ϕ' are continuous on [a, b], there is $\delta > 0$ such that $|\phi(t) - \phi(t')| < \delta_1$ and $|\phi'(t) - \phi'(t')| < \varepsilon$ for all t, t' in[a, b] with $|t - t'| < \delta$.

Now let $Q: a = t_0 < ... < t_m = b$ with $||Q|| < \delta$. If we put $x_k = \phi(t_k)$, then $P: c = x_0 < ... < x_m = d$ is a partition on [c, d] with $||P|| < \delta_1$ because ϕ is strictly increasing.

Note that the Mean Value Theorem implies that for each $[t_{k-1}, t_k]$, there is $\xi_k^* \in (t_{k-1}, t_k)$ such that

$$\Delta x_k = \phi(t_k) - \phi(t_{k-1}) = \phi'(\xi_k^*) \Delta t_k$$

This yields that

$$(3.4) \qquad \qquad |\Delta x_k - \phi'(\xi_k) \Delta t_k| < \varepsilon \Delta t_k$$

for any $\xi_k \in [t_{k-1}, t_k]$ for all k = 1, ..., m because of the choice of δ . Now for any $\xi_k \in [t_{k-1}, t_k]$, we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k| \leq |A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k| + |\sum f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k - \sum f(\phi(\xi_k^*))\phi'(\xi_k) \triangle t_k| + |\sum f(\phi(\xi_k^*))\phi'(\xi_k) \triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k|$$

Notice that inequality 3.2 implies that

$$|A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k| = |A - \sum f(\phi(\xi_k^*)) \triangle x_k| < \varepsilon.$$

Also, since we have $|\phi'(\xi_k^*) - \phi'(\xi_k)| < \varepsilon$ for all k = 1, ..., m, we have

$$\sum_{k} f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k - \sum_{k} f(\phi(\xi_k^*))\phi'(\xi_k) \triangle t_k | \le M(b-a)\varepsilon$$

where $|f(x)| \leq M$ for all $x \in [c, d]$. On the other hand, by using inequality 3.4 we have

$$|\phi'(\xi_k) \triangle t_k| \le \triangle x_k + \varepsilon \triangle t_k$$

for all k. This, together with inequality 3.3 imply that

$$\begin{split} &|\sum f(\phi(\xi_k^*))\phi'(\xi_k) \triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k| \\ &\leq \sum \omega_k(f,P) |\phi'(\xi_k) \triangle t_k| \ (\because \phi(\xi_k^*), \phi(\xi_k) \in [x_{k-1}, x_k]) \\ &\leq \sum \omega_k(f,P) (\triangle x_k + \varepsilon \triangle t_k) \\ &\leq \varepsilon + 2M(b-a)\varepsilon. \end{split}$$

Finally by inequality 3.5, we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k| \le \varepsilon + M(b-a)\varepsilon + \varepsilon + 2M(b-a)\varepsilon.$$

The proof is finished.

4. Improper Riemann Integrals

Definition 4.1. Let $-\infty < a < b < \infty$.

(i) Let f be a function defined on $[a, \infty)$. Assume that the restriction $f|_{[a,T]}$ is integrable over [a,T] for all T > a. Put $\int_{a}^{\infty} f := \lim_{T \to \infty} \int_{a}^{T} f$ if this limit exists. Similarly, we can define $\int_{-\infty}^{b} f$ if f is defined on $(-\infty, b]$.

(ii) If f is defined on (a,b] and $f|_{[c,b]} \in R[c,b]$ for all a < c < b. Put $\int_{a}^{b} f := \lim_{c \to a+} \int_{a}^{b} f$ if it exists.

Similarly, we can define $\int_a^b f$ if f is defined on [a, b]. (iii) As f is defined on \mathbb{R} , if $\int_0^\infty f$ and $\int_{-\infty}^0 f$ both exist, then we put $\int_{-\infty}^\infty f = \int_{-\infty}^0 f + \int_0^\infty f$. In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the integrals are convergent.

Example 4.2. Define (formally) an improper integral $\Gamma(s)$ (called the Γ -function) as follows:

$$\Gamma(s) := \int_0^\infty x^{s-1} e^{-x} dx$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if s > 0.

Proof. Put $I(s) := \int_0^1 x^{s-1} e^{-x} dx$ and $II(s) := \int_1^\infty x^{s-1} e^{-x} dx$. We first claim that the integral II(s)is convergent for all $s \in \mathbb{R}$.

In fact, if we fix $s \in \mathbb{R}$, then we have

$$\lim_{x \to \infty} \frac{x^{s-1}}{e^{x/2}} = 0$$

So there is M > 1 such that $\frac{x^{s-1}}{e^{x/2}} \leq 1$ for all $x \geq M$. Thus we have

$$0 \le \int_M^\infty x^{s-1} e^{-x} dx \le \int_M^\infty e^{-x/2} dx < \infty.$$

Therefore we need to show that the integral I(s) is convergent if and only if s > 0. Note that for $0 < \eta < 1$, we have

$$0 \le \int_{\eta}^{1} x^{s-1} e^{-x} dx \le \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{1}{s} (1-\eta^{s}) & \text{if } s-1 \ne -1; \\ -\ln \eta & \text{otherwise }. \end{cases}$$

Thus the integral $I(s) = \lim_{\eta \to 0+} \int_{\eta}^{1} x^{s-1} e^{-x} dx$ is convergent if s > 0. Conversely, we also have

$$\int_{\eta}^{1} x^{s-1} e^{-x} dx \ge e^{-1} \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{e^{-1}}{s} (1-\eta^{s}) & \text{if } s-1 \neq -1; \\ -e^{-1} \ln \eta & \text{otherwise }. \end{cases}$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} dx$ is divergent as $\eta \to 0+$. The result follows.

5. Uniform Convergence of a Sequence of Differentiable Functions

Proposition 5.1. Let $f_n : (a,b) \longrightarrow \mathbb{R}$ be a sequence of functions. Assume that it satisfies the following conditions:

- (i) : $f_n(x)$ point-wise converges to a function f(x) on (a,b);
- (ii) : each f_n is a C^1 function on (a, b);
- (iii) : $f'_n \to g$ uniformly on (a, b).

Then f is a C^1 -function on (a, b) with f' = q.

Proof. Fix $c \in (a, b)$. Then for each x with c < x < b (similarly, we can prove it in the same way as a < x < c), the Fundamental Theorem of Calculus implies that

$$f_n(x) = \int_c^x f'(t)dt + f_n(c).$$

Since $f'_n \to g$ uniformly on (a, b), we see that

$$\int_c^x f'_n(t)dt \longrightarrow \int_c^x g(t)dt.$$

This gives

(5.1)
$$f(x) = \int_{c}^{x} g(t)dt + f(c).$$

for all $x \in (c, b)$. Similarly, we have $f(x) = \int_c^x g(t)dt + f(c)$ for all $x \in (a, b)$. On the other hand, g is continuous on (a, b) since each f'_n is continuous and $f'_n \to g$ uniformly on (a, b). Equation 5.1 will tell us that f' exists and f' = g on (a, b). The proof is finished. \Box

Proposition 5.2. Let (f_n) be a sequence of differentiable functions defined on (a, b). Assume that

- (i): there is a point $c \in (a, b)$ such that $\lim f_n(c)$ exists;
- (ii): f'_n converges uniformly to a function g on (a, b).

Then

- (a): f_n converges uniformly to a function f on (a, b);
- (b): f is differentiable on (a, b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem. Let $\varepsilon > 0$. Then by the assumptions (i) and (ii), there is a positive integer N such that

$$|f_m(c) - f_n(c)| < \varepsilon$$
 and $|f'_m(x) - f'_n(x)| < \varepsilon$

for all $m, n \ge N$ and for all $x \in (a, b)$. Now fix c < x < b and $m, n \ge N$. To apply the Mean Value Theorem for $f_m - f_n$ on (c, x), then there is a point ξ between c and x such that

(5.2)
$$f_m(x) - f_n(x) = f_m(c) - f_n(c) + (f'_m(\xi) - f'_n(\xi))(x - c).$$

This implies that

$$|f_m(x) - f_n(x)| \le |f_m(c) - f_n(c)| + |f'_m(\xi) - f'_n(\xi)| |x - c| < \varepsilon + (b - a)\varepsilon$$

for all $m, n \ge N$ and for all $x \in (c, b)$. Similarly, when $x \in (a, c)$, we also have

$$|f_m(x) - f_n(x)| < \varepsilon + (b - a)\varepsilon.$$

So Part (a) follows.

Let f be the uniform limit of (f_n) on (a, b)

For Part (b), we fix $u \in (a, b)$. We are going to show

$$\lim_{x \to u} \frac{f(x) - f(u)}{x - u} = g(u)$$

Let $\varepsilon > 0$. Since (f'_n) is uniformly convergent on (a, b), there is $N \in \mathbb{N}$ such that

$$(5.3) |f'_m(x) - f'_n(x)| < \varepsilon$$

for all $m, n \ge N$ and for all $x \in (a, b)$

Note that for all $m \ge N$ and $x \in (a, b) \setminus \{u\}$, applying the Mean value Theorem for $f_m - f_N$ as before, we have

$$\frac{f_m(x) - f_N(x)}{x - u} = \frac{f_m(u) - f_N(u)}{x - u} + (f'_m(\xi) - f'_N(\xi))$$

for some ξ between u and x. So Eq.5.3 implies that

(5.4)
$$\left|\frac{f_m(x) - f_m(u)}{x - u} - \frac{f_N(x) - f_N(u)}{x - u}\right| \le \varepsilon$$

for all $m \ge N$ and for all $x \in (a, b)$ with $x \ne u$. Taking $m \rightarrow \infty$ in Eq.5.4, we have

$$\left|\frac{f(x) - f(u)}{x - u} - \frac{f_N(x) - f_N(u)}{x - u}\right| \le \varepsilon.$$

Hence we have

$$\begin{aligned} |\frac{f(x) - f(u)}{x - u} - f'_N(u)| &\leq |\frac{f(x) - f(u)}{x - c} - \frac{f_N(x) - f_N(u)}{x - u}| + |\frac{f_N(x) - f_N(u)}{x - u} - f'_N(u)| \\ &\leq \varepsilon + |\frac{f_N(x) - f_N(u)}{x - u} - f'_N(u)|. \end{aligned}$$

So if we can take $0 < \delta$ such that $\left|\frac{f_N(x) - f_N(u)}{x - u} - f'_N(u)\right| < \varepsilon$ for $0 < |x - u| < \delta$, then we have

(5.5)
$$\left|\frac{f(x) - f(u)}{x - u} - f'_N(u)\right| \le 2\varepsilon$$

for $0 < |x - u| < \delta$. On the other hand, by the choice of N, we have $|f'_m(y) - f'_N(y)| < \varepsilon$ for all $y \in (a, b)$ and $m \ge N$. So we have $|g(u) - f'_N(u)| \le \varepsilon$. This together with Eq.5.5 give

$$\left|\frac{f(x) - f(u)}{x - u} - g(u)\right| \le 3\varepsilon$$

as $0 < |x - u| < \delta$, that is we have

$$\lim_{x \to u} \frac{f(x) - f(u)}{x - u} = g(u)$$

The proof is finished.

Remark 5.3. The uniform convergence assumption of (f'_n) in Propositions 5.1 and 5.2 is essential. **Example 5.4.** Let $f_n(x) := \frac{x}{1+n^2x^2}$ for $x \in (-1,1)$. Then we have

$$g(x) := \lim_{n} f'_{n}(x) := \lim_{n} \frac{1 - n^{2}x^{2}}{(1 + n^{2}x^{2})^{2}} = \begin{cases} 0 & \text{if } x \neq 0; \\ 1 & \text{if } x = 0. \end{cases}$$

On the other hand, $f_n \to 0$ uniformly on (-1,1). In fact, if $f'_n(1/n) = 0$ for all n = 1, 2, ..., then f_n attains the maximal value $f_n(1/n) = \frac{1}{2n}$ at x = 1/n for each n = 1, ... and hence, $f_n \to 0$ uniformly on (-1,1).

So Propositions 5.1 and 5.2 does not hold. Note that (f'_n) does not converge uniformly to g on (-1, 1).

6. DINI'S THEOREM

Recall that a subset A of \mathbb{R} is said to be *compact* if for any family open intervals cover $\{J_i\}_{i\in I}$ of A, that is, each J_i is and open interval and $A \subseteq \bigcup_{i\in I} J_i$, we can find finitely many $J_{i_1}, ..., J_{i_N}$ such that $A \subseteq J_{i_1} \cup \cdots \cup J_{i_N}$.

The following is a very important result.

Theorem 6.1. A subset A of \mathbb{R} is compact if and only if any sequence (x_n) in A has a convergent subsequence (x_{n_k}) such that $\lim_k x_{n_k} \in A$. In particular, every closed and bounded interval is compact by using the Bolzano-Weierstrass Theorem.

12

Proposition 6.2. (Dini's Theorem): Let A be a compact subset of \mathbb{R} and $f_n : A \to \mathbb{R}$ be a sequence of continuous functions defined on A. Suppose that

- (i) for each $x \in A$, we have $f_n(x) \leq f_{n+1}(x)$ for all n = 1, 2...;
- (ii) the pointwise limit $f(x) := \lim_{n \to \infty} f_n(x)$ exists for all $x \in A$;
- (iii) f is continuous on A.

Then f_n converges to f uniformly on A.

Proof. Let $g_n := f - f_n$ defined on A. Then each g_n is continuous and $g_n(x) \downarrow 0$ pointwise on A. It suffices to show that g_n converges to 0 uniformly on A.

ε.

Method I: Suppose not. Then there is $\varepsilon > 0$ such that for all positive integer N, we have

$$(6.1) g_n(x_n) \ge$$

for some $n \ge N$ and some $x_n \in A$. From this, by passing to a subsequence we may assume that $g_n(x_n) \ge \varepsilon$ for all n = 1, 2, ... Then by using the compactness of A, Theorem 6.1 gives a convergent subsequence (x_{n_k}) of (x_n) in A. Let $z := \lim_k x_{n_k} \in A$. Since $g_{n_k}(z) \downarrow 0$ as $k \to \infty$. So, there is a positive integer K such that $0 \le g_{n_K}(z) < \varepsilon/2$. Since g_{n_K} is continuous at z and $\lim_i x_{n_i} = z$, we have $\lim_i g_{n_K}(x_{n_i}) = g_{n_K}(z)$. So, we can choose i large enough such that i > K

$$g_{n_i}(x_{n_i}) \le g_{n_K}(x_{n_i}) < \varepsilon/2$$

because $g_m(x_{n_i}) \downarrow 0$ as $m \to \infty$. This contradicts to the Inequality 6.1. **Method II**: Let $\varepsilon > 0$. Fix $x \in A$. Since $g_n(x) \downarrow 0$, there is $N(x) \in \mathbb{N}$ such that $0 \leq g_n(x) < \varepsilon$ for all $n \geq N(x)$. Since $g_{N(x)}$ is continuous, there is $\delta(x) > 0$ such that $g_{N(x)}(y) < \varepsilon$ for all $y \in A$ with $|x-y| < \delta(x)$. If we put $J_x := (x - \delta(x), x + \delta(x))$, then $A \subseteq \bigcup_{x \in A} J_x$. Then by the compactness of A, there are finitely many $x_1, ..., x_m$ in A such that $A \subseteq J_{x_1} \cup \cdots \cup J_{x_m}$. Put $N := \max(N(x_1), ..., N(x_m))$. Now if $y \in A$, then $y \in J(x_i)$ for some $1 \leq i \leq m$. This implies that

$$g_n(y) \le g_{N(x_i)}(y) < \varepsilon$$

for all $n \ge N \ge N(x_i)$.

References

[1] R.G. Bartle and D.R. Sherbert, Introduction to real analysis, Fourth edition, Wiley, (2011).

7. Absolutely convergent series

Throughout this section, let (a_n) be a sequence of complex numbers.

Definition 7.1. We say that a series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n| < \infty$.

Also a convergent series $\sum_{n=1}^{\infty} a_n$ is said to be conditionally convergent if it is not absolute convergent.

Example 7.2. Important Example : The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\alpha}}$ is conditionally convergent when $0 < \alpha \leq 1$.

This example shows us that a convergent improper integral may fail to the absolute convergence or square integrable property.

For instance, if we consider the function $f:[1,\infty) \longrightarrow \mathbb{R}$ given by

$$f(x) = \frac{(-1)^{n+1}}{n^{\alpha}}$$
 if $n \le x < n+1$.

If $\alpha = 1/2$, then $\int_{1}^{\infty} f(x) dx$ is convergent but it is neither absolutely convergent nor square integrable.

Notation 7.3. Let $\sigma : \{1, 2...\} \longrightarrow \{1, 2...\}$ be a bijection. A formal series $\sum_{n=1}^{\infty} a_{\sigma(n)}$ is called an rearrangement of $\sum_{n=1}^{\infty} a_n$.

Example 7.4. In this example, we are going to show that there is an rearrangement of the series $\sum_{\substack{i=1\\i gent.}}^{\infty} \frac{(-1)^{i+1}}{i}$ is divergent although the original series is convergent. In fact, it is conditionally convergent.

We first notice that the series $\sum_{i} \frac{1}{2i-1}$ diverges to infinity. Thus for each M > 0, there is a positive integer N such that

$$\sum_{i=1}^{n} \frac{1}{2i-1} \ge M \qquad \qquad \cdots \cdots \cdots (*)$$

for all $n \geq N$. Then there is $N_1 \in \mathbb{N}$ such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} > 1.$$

By using (*) again, there is a positive integer N_2 with $N_1 < N_2$ such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} + \sum_{N_1 < i \le N_2} \frac{1}{2i-1} - \frac{1}{4} > 2.$$

To repeat the same procedure, we can find a positive integers subsequence (N_k) such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} + \sum_{N_1 < i \le N_2} \frac{1}{2i-1} - \frac{1}{4} + \dots - \sum_{N_{k-1} < i \le N_k} \frac{1}{2i-1} - \frac{1}{2k} > k$$

for all positive integers k. So if we let $a_n = \frac{(-1)^{n+1}}{n}$, then one can find a bijection $\sigma : \mathbb{N} \to \mathbb{N}$ such that the series $\sum_{i=1}^{\infty} a_{\sigma(i)}$ is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ and diverges to infinity. The proof is finished.

Theorem 7.5. Let
$$\sum_{n=1}^{\infty} a_n$$
 be an absolutely convergent series. Then for any rearrangement $\sum_{n=1}^{\infty} a_{\sigma(n)}$

is also absolutely convergent. Moreover, we have $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\sigma(n)}$.

Proof. Let $\sigma : \{1, 2...\} \longrightarrow \{1, 2...\}$ be a bijection as before. We first claim that $\sum_n a_{\sigma(n)}$ is also absolutely convergent. Let $\varepsilon > 0$. Since $\sum_n |a_n| < \infty$, there is a positive integer N such that

$$|a_{N+1}| + \dots + |a_{N+p}| < \varepsilon \qquad \dots + (*)$$

for all p = 1, 2... Notice that since σ is a bijection, we can find a positive integer M such that $M > \max\{j : 1 \le \sigma(j) \le N\}$. Then $\sigma(i) \ge N$ if $i \ge M$. This together with (*) imply that if $i \ge M$ and $p \in \mathbb{N}$, we have

$$|a_{\sigma(i+1)}| + \cdots + |a_{\sigma(i+p)}| < \varepsilon.$$

Thus the series $\sum_{n} a_{\sigma(n)}$ is absolutely convergent by the Cauchy criteria. Finally we claim that $\sum_{n} a_n = \sum_{n} a_{\sigma(n)}$. Put $l = \sum_{n} a_n$ and $l' = \sum_{n} a_{\sigma(n)}$. Now let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that

$$|l - \sum_{n=1}^{N} a_n| < \varepsilon$$
 and $|a_{N+1}| + \dots + |a_{N+p}| < \varepsilon \dots + (**)$

for all $p \in \mathbb{N}$. Now choose a positive integer M large enough so that $\{1, ..., N\} \subseteq \{\sigma(1), ..., \sigma(M)\}$ and $|l' - \sum_{i=1}^{M} a_{\sigma(i)}| < \varepsilon$. Notice that since we have $\{1, ..., N\} \subseteq \{\sigma(1), ..., \sigma(M)\}$, the condition (**) gives

$$\left|\sum_{n=1}^{N} a_n - \sum_{i=1}^{M} a_{\sigma(i)}\right| \le \sum_{N < i < \infty} |a_i| \le \varepsilon.$$

We can now conclude that

$$|l - l'| \le |l - \sum_{n=1}^{N} a_n| + |\sum_{n=1}^{N} a_n - \sum_{i=1}^{M} a_{\sigma(i)}| + |\sum_{i=1}^{M} a_{\sigma(i)} - l'| \le 3\varepsilon.$$

The proof is complete.

8. Power series

Throughout this section, let

$$f(x) = \sum_{i=0}^{\infty} a_i x^i \qquad \dots \dots \dots \dots (*)$$

denote a formal power series, where $a_i \in \mathbb{R}$.

Lemma 8.1. Suppose that there is $c \in \mathbb{R}$ with $c \neq 0$ such that f(c) is convergent. Then

- (i) : f(x) is absolutely convergent for all x with |x| < |c|.
- (ii) : f converges uniformly on $[-\eta, \eta]$ for any $0 < \eta < |c|$.

Proof. For Part (i), note that since f(c) is convergent, then $\lim a_n c^n = 0$. So there is a positive integer N such that $|a_n c^n| \leq 1$ for all $n \geq N$. Now if we fix |x| < |c|, then |x/c| < 1. Therefore, we have

$$\sum_{n=1}^{\infty} |a_n| |x^n| \le \sum_{n=1}^{N-1} |a_n| |x^n| + \sum_{n \ge N} |a_n c^n| |x/c|^n \le \sum_{n=1}^{N-1} |a_n| |x^n| + \sum_{n \ge N} |x/c|^n < \infty.$$

So Part (i) follows.

Now for Part (*ii*), if we fix $0 < \eta < |c|$, then $|a_n x^n| \le |a_n \eta|^n$ for all n and for all $x \in [-\eta, \eta]$. On the other hand, we have $\sum_n |a_n \eta^n| < \infty$ by Part (*i*). So f converges uniformly on $[-\eta, \eta]$ by the M-test. The proof is finished.

Remark 8.2. In Lemma 8.9(ii), notice that if f(c) is convergent, it does not imply f converges uniformly on [-c, c] in general.

For example, $f(x) := 1 + \sum_{n=1}^{\infty} \frac{x^n}{n}$. Then f(-1) is convergent but f(1) is divergent.

Definition 8.3. Call the set dom $f := \{x \in \mathbb{R} : f(c) \text{ is convergent }\}$ the domain of convergence of f for convenience. Let $0 \le r := \sup\{|c| : c \in dom \ f\} \le \infty$. Then r is called the radius of convergence of f.

Remark 8.4. Notice that by Lemma 8.9, then the domain of convergence of f must be the interval with the end points $\pm r$ if $0 < r < \infty$. When r = 0, then dom $f = \{0\}$. Finally, if $r = \infty$, then dom $f = \mathbb{R}$.

Example 8.5. If $f(x) = \sum_{n=0}^{\infty} n! x^n$, then r = (0). In fact, notice that if we fix a non-zero number x and consider $\lim_{n \to \infty} |(n+1)! x^{n+1}| / |n! x^n| = \infty$, then by the ratio test f(x) must be divergent for any $x \neq 0$. So r = 0 and dom f = (0).

Example 8.6. Let $f(x) = 1 + \sum_{n=1}^{\infty} x^n/n^n$. Notice that we have $\lim_n |x^n/n^n|^{1/n} = 0$ for all x. So the root test implies that f(x) is convergent for all x and then $r = \infty$ and dom $f = \mathbb{R}$.

Example 8.7. Let $f(x) = 1 + \sum_{n=1}^{\infty} x^n/n$. Then $\lim_n |x^{n+1}/(n+1)| \cdot |n/x^n| = |x|$ for all $x \neq 0$. So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is divergent. So r = 1. Also, it is known that f(1) is divergent but f(-1) is divergent. Therefore, we have dom f = [-1, 1).

Example 8.8. Let $f(x) = \sum x^n/n^2$. Then by using the same argument of Example 8.7, we have r = 1. On the other hand, it is known that $f(\pm 1)$ both are convergent. So dom f = [-1, 1].

Lemma 8.9. With the notation as above, if r > 0, then f converges uniformly on $(-\eta, \eta)$ for any $0 < \eta < r$.

Proof. It follows from Lemma 8.1 at once.

Remark 8.10. Note that the Example 8.7 shows us that f may not converge uniformly on (-r, r). In fact let f be defined as in Example 8.7. Then f does not converges on (-1, 1). In fact, if we let $s_n(x) = \sum_{k=0}^{\infty} a_k x^k$, then for any positive integer n and 0 < x < 1, we have

$$|s_{2n}(x) - s_n(x)| = \frac{x^{n+1}}{n+1} + \dots + \frac{x^n}{2n}.$$

From this we see that if n is fixed, then $|s_{2n}(x) - s_n(x)| \to 1/2$ as $x \to 1-$. So for each n, we can find 0 < x < 1 such that $|s_{2n}(x) - s_n(x)| > \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$. Thus f does not converges uniformly on (-1,1) by the Cauchy Theorem.

Proposition 8.11. With the notation as above, let $\ell = \overline{\lim} |a_n|^{1/n}$ or $\lim \frac{|a_{n+1}|}{|a_n|}$ provided it exists. Then

$$r = \begin{cases} \frac{1}{\ell} & \quad if \ \ 0 < \ell < \infty; \\ 0 & \quad if \ \ \ell = \infty; \\ \infty & \quad if \ \ \ell = 0. \end{cases}$$

Proposition 8.12. With the notation as above if $0 < r \leq \infty$, then $f \in C^{\infty}(-r,r)$. Moreover, the k-derivatives $f^{(k)}(x) = \sum_{n > k} a_k n(n-1)(n-2) \cdots (n-k+1) x^{n-k}$ for all $x \in (-r, r)$.

Proof. Fix $c \in (-r, r)$. By Lemma 8.9, one can choose $0 < \eta < r$ such that $c \in (-\eta, \eta)$ and f converges uniformly on $(-\eta, \eta)$.

If we consider the series $\sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} na_n x^{n-1}$, then it also has the same radius r because $\lim_n |na_n|^{1/n} = \lim_n |a_n|^{1/n}$. This implies that the series $\sum_{n=1}^{\infty} na_n x^{n-1}$ converges uniformly on $(-\eta, \eta)$. Therefore, the restriction $f|(-\eta, \eta)$ is differentiable. In particular, f'(c) exists and $f'(c) = \sum_{n=1}^{\infty} na_n c^{n-1}$. It needs to show that the k-derivatives $f^{(k)}(c)$ exists for all $k \ge 0$. Consider the case k = 1 first.

So the result can be shown inductively on k.

Proposition 8.13. With the notation as above, suppose that r > 0. Then we have

$$\int_0^x f(t)dt = \sum_{n=0}^\infty \int_0^x a_n t^n dt = \sum_0^\infty \frac{1}{n+1} a_n x^{n+1}$$

for all $x \in (-r, r)$.

Proof. Fix 0 < x < r. Then by Lemma 8.9 f converges uniformly on [0, x]. Since each term $a_n t^n$ is continuous, the result follows. \square

Theorem 8.14. (Abel): With the notation as above, suppose that 0 < r and f(r) (or f(-r)) exists. Then f is continuous at x = r (resp. x = -r), that is $\lim_{x \to -r} f(x) = f(r)$.

Proof. Note that by considering f(-x), it suffices to show that the case x = r holds. Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at x = 1 as desired. Let $\varepsilon > 0$. Since f(1) is convergent, then there is a positive integer such that

$$|a_{n+1} + \dots + a_{n+p}| < \varepsilon$$

for $n \ge N$ and for all p = 1, 2... Note that for $n \ge N$; p = 1, 2... and $x \in [0, 1]$, we have

$$s_{n+p}(x) - s_n(x) = a_{n+1}x^{n+1} + a_{n+2}x^{n+1} + a_{n+3}x^{n+1} + \dots + a_{n+p}x^{n+1} + a_{n+2}(x^{n+2} - x^{n+1}) + a_{n+3}(x^{n+2} - x^{n+1}) + \dots + a_{n+p}(x^{n+2} - x^{n+1}) + a_{n+3}(x^{n+3} - x^{n+2}) + \dots + a_{n+p}(x^{n+3} - x^{n+2}) \vdots + a_{n+p}(x^{n+p} - x^{n+p-1}).$$

Since $x \in [0,1]$, $|x^{n+k+1} - x^{n+k}| = x^{n+k} - x^{n+k+1}$. So the Eq.8.1 implies that $|s_{n+p}(x) - s_n(x)| \le \varepsilon (x_{n+1} + (x^{n+1} - x^{n+2}) + (x^{n+2} - x^{n+3}) + \dots + (x^{n+p-1} - x^{n+p})) = \varepsilon (2x^{n+1} - x^{n+p}) \le 2\varepsilon$. So f converges uniformly on [0,1] as desired.

Finally for the general case, we consider $g(x) := f(rx) = \sum_n a_n r^n x^n$. Note that $\lim_n |a_n r^n|^{1/n} = 1$ and g(1) = f(r). Then by the case above, we have shown that

$$f(r) = g(1) = \lim_{x \to 1^{-}} g(x) = \lim_{x \to r^{-}} f(x).$$

The proof is finished.

Remark 8.15. In Remark 8.10, we have seen that f may not converges uniformly on (-r, r). However, in the proof of Abel's Theorem above, we have shown that if $f(\pm r)$ both exist, then f converges uniformly on [-r, r] in this case. **Proposition 9.1.** Let $f \in C^{\infty}(a,b)$ and $c \in (a,b)$. Then for any $x \in (a,b) \setminus \{c\}$ and for any $n \in \mathbb{N}$, there is $\xi = \xi(x,n)$ between c and x such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} + \int_{c}^{x} \frac{f^{(n+1)}(t)}{n!} (x-t)^{n} dt$$

 $Call \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k \text{ (may not be convergent) the Taylor series of } f \text{ at } c.$

Proof. It is easy to prove by induction on n and the integration by part.

Definition 9.2. A real-valued function f defined on (a, b) is said to be real analytic if for each $c \in (a, b)$, one can find $\delta > 0$ and a power series $\sum_{k=0}^{\infty} a_k (x-c)^k$ such that

$$f(x) = \sum_{k=0}^{\infty} a_k (x-c)^k \qquad \cdots \cdots \cdots (*)$$

for all $x \in (c - \delta, c + \delta) \subseteq (a, b)$.

Remark 9.3.

(i) : Concerning about the definition of a real analytic function f, the expression (*) above is uniquely determined by f, that is, each coefficient a_k 's is uniquely determined by f. In fact, by Proposition 8.12, we have seen that $f \in C^{\infty}(a, b)$ and

$$a_k = \frac{f^{(k)}(c)}{k!} \qquad \dots \dots \dots (**)$$

for all $k = 0, 1, 2, \dots$

(ii) : Although every real analytic function is C^{∞} , the following example shows that the converse does not hold.

Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

One can directly check that $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)}(0) = 0$ for all k = 0, 1, 2... So if f is real analytic, then there is $\delta > 0$ such that $a_k = 0$ for all k by the Eq.(**) above and hence $f(x) \equiv 0$ for all $x \in (-\delta, \delta)$. It is absurd.

(iii) Interesting Fact : Let D be an open disc in \mathbb{C} . A complex analytic function f on D is similarly defined as in the real case. However, we always have: f is complex analytic if and only if it is C^{∞} .

Proposition 9.4. Suppose that $f(x) := \sum_{k=0}^{\infty} a_k (x-c)^k$ is convergent on some open interval I centered at c, that is I = (c-r, c+r) for some r > 0. Then f is analytic on I.

Proof. We first note that $f \in C^{\infty}(I)$. By considering the translation x - c, we may assume that c = 0. Now fix $z \in I$. Now choose $\delta > 0$ such that $(z - \delta, z + \delta) \subseteq I$. We are going to show that

$$f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!} (x-z)^j.$$

for all $x \in (z - \delta, z + \delta)$. Notice that f(x) is absolutely convergent on I. This implies that

$$f(x) = \sum_{k=0}^{\infty} a_k (x - z + z)^k$$

= $\sum_{k=0}^{\infty} a_k \sum_{j=0}^k \frac{k(k-1)\cdots(k-j+1)}{j!} (x-z)^j z^{k-j}$
= $\sum_{j=0}^{\infty} \left(\sum_{k\ge j} k(k-1)\cdots(k-j+1)a_k z^{k-j}\right) \frac{(x-z)^j}{j!}$
= $\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!} (x-z)^j$

for all $x \in (z - \delta, z + \delta)$. The proof is finished.

Example 9.5. Let $\alpha \in \mathbb{R}$. Recall that $(1+x)^{\alpha}$ is defined by $e^{\alpha \ln(1+x)}$ for x > -1. Now for each $k \in \mathbb{N}$, put

$$\binom{\alpha}{k} = \begin{cases} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} & \text{if } k \neq 0;\\ 1 & \text{if } x = 0. \end{cases}$$

Then

$$f(x) := (1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

whenever |x| < 1. Consequently, f(x) is analytic on (-1, 1).

Proof. Notice that $f^{(k)}(x) = \alpha(\alpha - 1) \cdots (\alpha - k + 1)(1 + x)^{\alpha - k}$ for |x| < 1. Fix |x| < 1. Then by Proposition 9.1, for each positive integer n we have

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k + \int_0^x \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt$$

So by the mean value theorem for integrals, for each positive integer n, there is ξ_n between 0 and x such that

$$\int_0^x \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt = \frac{f^{(n)}(\xi_n)}{(n-1)!} (x-\xi_n)^{n-1} x$$

Now write $\xi_n = \eta_n x$ for some $0 < \eta_n < 1$ and $R_n(x) := \frac{f^{(n)}(\xi_n)}{(n-1)!} (x - \xi_n)^{n-1} x$. Then

$$R_n(x) = (\alpha - n + 1) \binom{\alpha}{n - 1} (1 + \eta_n x)^{\alpha - n} (x - \eta_n x)^{n - 1} x = (\alpha - n + 1) \binom{\alpha}{n - 1} x^n (1 + \eta_n x)^{\alpha - 1} (\frac{1 - \eta_n}{1 + \eta_n x})^{n - 1}$$

We need to show that $R_n(x) \to 0$ as $n \to \infty$, that is the Taylor series of f centered at 0 converges to f. By the Ratio Test, it is easy to see that the series $\sum_{k=0}^{\infty} (\alpha - k + 1) {\alpha \choose k} y^k$ is convergent as |y| < 1.

This tells us that $\lim_{n} |(\alpha - n + 1) \binom{\alpha}{n} x^n| = 0.$

can now conclude that $R_n(x) \to 0$ as |x| < 1. The proof is finished. Finally the last assertion follows from Proposition 9.4 at once. The proof is complete.

References

(Chi-Wai Leung) DEPARTMENT OF MATHEMATICS, THE CHINESE UNIVERSITY OF HONG KONG, SHATIN, HONG KONG *E-mail address*: cwleung@math.cuhk.edu.hk